Subscribe to our mailing list

“ We will not share your information.”

Wanna get our awesome news?
We will send you emails only several times per week. Isn't that cool?

Actually we will not spam you and keep your personal data secure


AUG 29/2018

MemComputing Integer Linear Programming

Integer linear programming (ILP) encompasses a very important class of optimization problems that are of great interest to both academia and industry. Several algorithms are available that attempt to explore the solution space of this class efficiently, while requiring a reasonable compute time. However, although these algorithms have reached various degrees of success over the years, they still face considerable challenges when confronted with particularly hard problem instances, such as those of the MIPLIB 2010 library. In this work we propose a radically different non-algorithmic approach to ILP based on a novel physics-inspired computing paradigm: Memcomputing. This paradigm is based on digital (hence scalable) machines represented by appropriate electrical circuits with memory. These machines can be either built in hardware or, as we do here, their equations of motion can be efficiently simulated on our traditional computers. We first describe a new circuit architecture of memcomputing machines specifically designed to solve for the linear inequalities representing a general ILP problem. We call these self-organizing algebraic circuits, since they self-organize dynamically to satisfy the correct (algebraic) linear inequalities. We then show simulations of these machines using MATLAB running on a single core of a Xeon processor for several ILP benchmark problems taken from the MIPLIB 2010 library, and compare our results against a renowned commercial solver. We show that our approach is very efficient when dealing with these hard problems. In particular, we find within minutes feasible solutions for one of these hard problems (f2000 from MIPLIB 2010) whose feasibility, to the best of our knowledge, has remained unknown for the past eight years.

JULY 03/2018

Evidence of an exponential speed-up in the solution of hard optimization problems

Optimization problems pervade essentially every scientific discipline and industry. Many such problems require finding a solution that maximizes the number of constraints satisfied. Often, these problems are particularly difficult to solve because they belong to the NP-hard class, namely algorithms that always find a solution in polynomial time are not known. Over the past decades, research has focused on developing heuristic approaches that attempt to find an approximation to the solution. However, despite numerous research efforts, in many cases even approximations to the optimal solution are hard to find, as the computational time for further refining a candidate solution grows exponentially with input size. …

JUNE 30/2018

Stress-testing memcomputing on hard combinatorial optimization problems

Memcomputing is a novel paradigm of computation that utilizes dynamical elements with memory to both store and process information on the same physical location. Its building blocks can be fabricated in hardware with standard electronic circuits, thus offering a path to its practical realization. In addition, since memcomputing is based on non-quantum elements, the equations of motion describing these machines can be simulated efficiently on standard computers. In fact, it was recently realized that memcomputing, and in particular its digital (hence scalable) version, when simulated on a classical machine provides a significant speed-up over state-of-the-art algorithms on a variety of non-convex problems. …

FEBRUARY 20/2018

Memcomputing: Leveraging memory and physics to compute efficiently

It is well known that physical phenomena may be of great help in computing some difficult problems efficiently. A typical example is prime factorization that may be solved in polynomial time by exploiting quantum entanglement on a quantum computer. There are, however, other types of (non-quantum) physical properties that one may leverage to compute efficiently a wide range of hard problems. In this perspective we discuss how to employ one such property, memory (time non-locality), in a novel physics-based approach to computation: Memcomputing. In particular, we focus on digital memcomputing machines (DMMs) that are scalable. DMMs can be realized with non-linear dynamical systems with memory…

JANURARY 01/2018

Accelerating Deep Learning with Memcomputing

Restricted Boltzmann machines (RBMs) and their extensions, often called “deep-belief networks”, are very powerful neural networks that have found widespread applicability in the fields of machine learning and big data. The standard way to training these models resorts to an iterative unsupervised procedure based on Gibbs sampling, called “contrastive divergence”, and additional supervised tuning via back-propagation. However, this procedure has been shown not to follow any gradient and can lead to suboptimal solutions. In this paper, we show a very efficient alternative to contrastive divergence by means of simulations of digital memcomputing machines (DMMs). We test our approach on pattern recognition using the standard MNIST data set of hand-written numbers…

AUGUST 16/2017

Topological Field Theory and Computing with Instantons

It is well known that dynamical systems may be employed as computing machines. However, not all dynamical systems offer particular advantages compared to the standard paradigm of computation, in regard to efficiency and scalability. Recently, it was suggested that a new type of machines, named digital –hence scalable– memcomputing machines (DMMs), that employ non-linear dynamical systems with memory, can solve complex Boolean problems efficiently. This result was derived using functional analysis without, however, providing a clear understanding of which physical features make DMMs such an efficient computational tool. Here, we show, using recently proposed topological field theory of dynamical systems, …

MAY 7/2017

Memcomputing Numerical Inversion With Self-Organizing Logic Gates

We propose to use digital memcomputing machines (DMMs), implemented with self-organizing logic gates (SOLGs), to solve the problem of numerical inversion. Starting from fixed-point scalar inversion, we describe the generalization to solving linear systems and matrix inversion. This method, when realized in hardware, will output the result in only one computational step. As an example, we perform simulations of the scalar case using a 5-bit logic circuit made of SOLGs, and show that the circuit successfully performs the inversion. Our method can be extended efficiently to any level of precision, since we prove that producing n-bit precision in the output …


Polynomial-time solution of prime factorization and NP-complete problems with digital memcomputing machines

We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept …

FEBRUARY 13/2015

Universal Memcomputing Machines

We introduce the notion of universal memcomputing machines (UMMs): a class of brain-inspired general-purpose computing machines based on systems with memory, whereby processing and storing of information occur on the same physical location. We analytically prove that the memory properties of UMMs endow them with universal computing power (they are Turing-complete), intrinsic parallelism, functional polymorphism, and information overhead, namely, their collective states can support exponential data compression directly in memory. We also demonstrate that a UMM has the same computational power as a nondeterministic Turing machine, namely, it can solve nondeterministic polynomial (NP)-complete problems in polynomial time. However, by virtue …