Subscribe to our mailing list
MemComputing
Subscribe

“ We will not share your information.”

Wanna get our awesome news?
We will send you emails only several times per week. Isn't that cool?
Subscribe!

Actually we will not spam you and keep your personal data secure

Publications

OCT 08/2018

Taming a non-convex landscape with dynamical long-range order: memcomputing the Ising spin-glass

Recent work on quantum annealing has emphasized the role of collective behavior in solving optimization problems. By enabling transitions of large clusters of variables, such solvers are able to navigate their state space and locate solutions efficiently despite having only local connections between elements. However, collective behavior is not exclusive to quantum annealers, and classical solvers that display collective dynamics should also possess an advantage in navigating a non-convex landscape. Here, we propose a simple model that demonstrates this effect, based on the recently suggested digital memcomputing machines (DMMs), which utilize a collection of dynamical components with memory connected to represent the structure of the underlying optimization problem. This model, when applied to finding the ground state of the Ising spin glass, undergoes a transient phase of avalanches which can span the entire lattice. We then show that a full implementation of a DMM exhibits superior scaling compared to other methods when tested on the same problem class. These results establish the advantages of computational approaches based on collective dynamics.

AUG 29/2018

MemComputing Integer Linear Programming

Integer linear programming (ILP) encompasses a very important class of optimization problems that are of great interest to both academia and industry. Several algorithms are available that attempt to explore the solution space of this class efficiently, while requiring a reasonable compute time. However, although these algorithms have reached various degrees of success over the years, they still face considerable challenges when confronted with particularly hard problem instances, such as those of the MIPLIB 2010 library. In this work we propose a radically different non-algorithmic approach to ILP based on a novel physics-inspired computing paradigm: Memcomputing. This paradigm is based on digital (hence scalable) machines represented by appropriate electrical circuits with memory. These machines can be either built in hardware or, as we do here, their equations of motion can be efficiently simulated on our traditional computers. We first describe a new circuit architecture of memcomputing machines specifically designed to solve for the linear inequalities representing a general ILP problem. We call these self-organizing algebraic circuits, since they self-organize dynamically to satisfy the correct (algebraic) linear inequalities. We then show simulations of these machines using MATLAB running on a single core of a Xeon processor for several ILP benchmark problems taken from the MIPLIB 2010 library, and compare our results against a renowned commercial solver. We show that our approach is very efficient when dealing with these hard problems. In particular, we find within minutes feasible solutions for one of these hard problems (f2000 from MIPLIB 2010) whose feasibility, to the best of our knowledge, has remained unknown for the past eight years.

JUN 30/2018

Stress-testing memcomputing on hard combinatorial optimization problems

Memcomputing is a novel paradigm of computation that utilizes dynamical elements with memory to both store and process information on the same physical location. Its building blocks can be fabricated in hardware with standard electronic circuits, thus offering a path to its practical realization. In addition, since memcomputing is based on non-quantum elements, the equations of motion describing these machines can be simulated efficiently on standard computers. In fact, it was recently realized that memcomputing, and in particular its digital (hence scalable) version, when simulated on a classical machine provides a significant speed-up over state-of-the-art algorithms on a variety of non-convex problems. …

FEB 20/2018

Memcomputing: Leveraging memory and physics to compute efficiently

It is well known that physical phenomena may be of great help in computing some difficult problems efficiently. A typical example is prime factorization that may be solved in polynomial time by exploiting quantum entanglement on a quantum computer. There are, however, other types of (non-quantum) physical properties that one may leverage to compute efficiently a wide range of hard problems. In this perspective we discuss how to employ one such property, memory (time non-locality), in a novel physics-based approach to computation: Memcomputing. In particular, we focus on digital memcomputing machines (DMMs) that are scalable. DMMs can be realized with non-linear dynamical systems with memory…

JAN 01/2018

Accelerating Deep Learning with Memcomputing

Restricted Boltzmann machines (RBMs) and their extensions, often called “deep-belief networks”, are very powerful neural networks that have found widespread applicability in the fields of machine learning and big data. The standard way to training these models resorts to an iterative unsupervised procedure based on Gibbs sampling, called “contrastive divergence”, and additional supervised tuning via back-propagation. However, this procedure has been shown not to follow any gradient and can lead to suboptimal solutions. In this paper, we show a very efficient alternative to contrastive divergence by means of simulations of digital memcomputing machines (DMMs). We test our approach on pattern recognition using the standard MNIST data set of hand-written numbers…

DEC 23/2017

On the Universality of Memcomputing Machines

Universal memcomputing machines (UMMs) [IEEE Trans. Neural Netw. Learn. Syst. 26, 2702 (2015)] represent a novel computational model in which memory (time non-locality) accomplishes both tasks of storing and processing of information. UMMs have been shown to be Turing-complete, namely they can simulate any Turing machine. In this paper, using set theory and cardinality arguments, we compare them with liquid-state machines (or “reservoir computing”) and quantum machines (“quantum computing”). We show that UMMs can simulate both types of machines, hence they are both “liquid-” or “reservoir-complete” and “quantum-complete”. Of course, these statements pertain only to the type of problems these machines can solve, and not to the amount of resources required for such simulations. Nonetheless, the method presented here provides a general framework in which to describe the relation between UMMs and any other type of computational model.

OCT 23/2017

Evidence of an exponential speed-up in the solution of hard optimization problems

Optimization problems pervade essentially every scientific discipline and industry. Many such problems require finding a solution that maximizes the number of constraints satisfied. Often, these problems are particularly difficult to solve because they belong to the NP-hard class, namely algorithms that always find a solution in polynomial time are not known. Over the past decades, research has focused on developing heuristic approaches that attempt to find an approximation to the solution. However, despite numerous research efforts, in many cases even approximations to the optimal solution are hard to find, as the computational time for further refining a candidate solution grows exponentially with input size. …

SEP /2017

Absence of periodic orbits in digital memcomputing machines with solutions

In Traversa and Di Ventra [Chaos 27, 023107 (2017)] we argued, without proof, that if the non-linear dynamical systems with memory describing the class of digital memcomputing machines (DMMs) have equilibrium points, then no periodic orbits can emerge. In fact, the proof of such a statement is a simple corollary of a theorem already demonstrated in Traversa and Di Ventra [Chaos 27, 023107 (2017)]. Here, we point out how to derive such a conclusion. Incidentally, the same demonstration implies absence of chaos, a result we have already demonstrated in Di Ventra and Traversa [Phys. Lett. A 381, 3255 (2017)] using topology. These results, together with those in Traversa and Di Ventra [Chaos 27, 023107 (2017)], guarantee that if the Boolean problem the DMMs are designed to solve has a solution, the system will always find it, irrespective of the initial conditions.

AUG 29/2017

Instantons in Self-Organizing Logic Gates

Self-organizing logic is a recently suggested framework that allows the solution of Boolean truth tables “in reverse”; i.e., it is able to satisfy the logical proposition of gates regardless to which terminal(s) the truth value is assigned (“terminal-agnostic logic”). It can be realized if time nonlocality (memory) is present. A practical realization of self-organizing logic gates (SOLGs) can be done by combining circuit elements with and without memory. By employing one such realization, we show, numerically, that SOLGs exploit elementary instantons to reach equilibrium points. Instantons are classical trajectories of the nonlinear equations of motion describing SOLGs and connect topologically distinct critical points in the phase space. By linear analysis at those points, we show that these instantons connect the initial critical point of the dynamics, with at least one unstable direction, directly to the final fixed point. We also show that the memory content of these gates affects only the relaxation time to reach the logically consistent solution. Finally, we demonstrate, by solving the corresponding stochastic differential equations, that, since instantons connect critical points, noise and perturbations may change the instanton trajectory in the phase space but not the initial and final critical points. Therefore, even for extremely large noise levels, the gates self-organize to the correct solution. Our work provides a physical understanding of, and can serve as an inspiration for, models of bidirectional logic gates that are emerging as important tools in physics-inspired, unconventional computing.

MAR 8/2017

Absence of chaos in Digital Memcomputing Machines with solutions

Digital memcomputing machines (DMMs) are non-linear dynamical systems designed so that their equilibrium points are solutions of the Boolean problem they solve. In a previous work [Chaos 27, 023107 (2017)] it was argued that when DMMs support solutions of the associated Boolean problem then strange attractors cannot coexist with such equilibria. In this work, we demonstrate such conjecture. In particular, we show that both topological transitivity and the strongest property of topological mixing are inconsistent with the point dissipative property of DMMs when equilibrium points are present. This is true for both the whole phase space and the global attractor. Absence of topological transitivity is enough to imply absence of chaotic behavior. In a similar vein, we prove that if DMMs do not have equilibrium points, the only attractors present are invariant tori/periodic orbits with periods that may possibly increase with system size (quasi-attractors).

DEC 13/2016

Memcomputing Numerical Inversion With Self-Organizing Logic Gates

We propose to use digital memcomputing machines (DMMs), implemented with self-organizing logic gates (SOLGs), to solve the problem of numerical inversion. Starting from fixed-point scalar inversion, we describe the generalization to solving linear systems and matrix inversion. This method, when realized in hardware, will output the result in only one computational step. As an example, we perform simulations of the scalar case using a 5-bit logic circuit made of SOLGs, and show that the circuit successfully performs the inversion. Our method can be extended efficiently to any level of precision, since we prove that producing n-bit precision in the output …

SEP 11/2016

Topological Field Theory and Computing with Instantons

It is well known that dynamical systems may be employed as computing machines. However, not all dynamical systems offer particular advantages compared to the standard paradigm of computation, in regard to efficiency and scalability. Recently, it was suggested that a new type of machines, named digital –hence scalable– memcomputing machines (DMMs), that employ non-linear dynamical systems with memory, can solve complex Boolean problems efficiently. This result was derived using functional analysis without, however, providing a clear understanding of which physical features make DMMs such an efficient computational tool. Here, we show, using recently proposed topological field theory of dynamical systems, …

DEC 16/2015

Polynomial-time solution of prime factorization and NP-complete problems with digital memcomputing machines

We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept …

MAY 05/2014

Universal Memcomputing Machines

We introduce the notion of universal memcomputing machines (UMMs): a class of brain-inspired general-purpose computing machines based on systems with memory, whereby processing and storing of information occur on the same physical location. We analytically prove that the memory properties of UMMs endow them with universal computing power (they are Turing-complete), intrinsic parallelism, functional polymorphism, and information overhead, namely, their collective states can support exponential data compression directly in memory. We also demonstrate that a UMM has the same computational power as a nondeterministic Turing machine, namely, it can solve nondeterministic polynomial (NP)-complete problems in polynomial time. However, by virtue …