
1

An Efficient Approach to the Supervised
Training of Deep Neural Networks using

MemComputing

White Paper

Breakthrough Computing Performance

Fabio L. Traversa
Erick Pederson

White Paper
Training A Fully Connected Neural Network

1

2

5

Gradient-based training methods and their main limitations

Deep learning has been embraced by virtually every industry for decision support and even
automated decision making. Deep Neural Networks (DNNs) support applications such as autonomous
vehicles, image processing, financial transactions, language processing, aviation, manufacturing, fraud
detection, and an almost endless list of additional applications. A DNN is only as good as its training.

Gradient-based methods represent the state of the art in the area of supervised training, where
Adaptive Moment Estimation (ADAM) and Stochastic Gradient Descent (SGD) are among the most
popular. However, these methods suffer from limitations and must commonly be augmented using a
variety of algorithmic extensions, such as dropout, momentum, weight decay, and variable learning rate.
In many cases, training a DNN is more of an art than a science.

We introduce a new supervised training method based on memcomputing technology to
accelerate the training of DNNs. We show that the memcomputing-based approach is faster (better
accuracy in fewer epochs) than ADAM & SGD with reduced error rates and provides more accurate
DNNs. Memcomputing does not require additional algorithmic extensions that substantially reduces the
number of hyperparameters to tune.

As a case study, we report the training of a fully connected feedforward DNN for the detection of
Exotic High-Energy Particles and highlight the benefits of memcomputing versus ADAM and SGD.

EXECUTIVE SUMMARY

2

3

The MemComputing Innovative Training Approach

Case Study: Challenges in High Energy Particles Detection

© Copyright MemComputing, Inc. 2020

Performance Assessment – Without Weight Decay

7 Performance Assessment – A Deeper Analysis

4 Comparative Tests: Set up and Methods

Performance Assessment – Including the Weight Decay6

8 Conclusion

3

Gradient-based training methods and their main limitations

Backpropagation (BP) was adopted in the mid-1980’s as the preferred training algorithm
because it was shown to be far faster than other commonly used methods. BP is a method
of evaluating gradients through a computational graph. When that computational graph is a
neural network, BP evaluates the gradients of an associated loss function, also known as a cost
function, associated with the weights of the neural network. SGD and ADAM incorporate BP, and
because of this, both suffer from some inherent limitations of backpropagation:

• The deeper the network (i.e., an increasing number of layers), the harder it becomes to train
due to the well-known vanishing gradient effect [1], which slows down the propagation of the
correction to hierarchically higher layers. Additionally, gradient updates from separate data
points are calculated independently and frequently act antagonistically, slowing convergence.
Adaptive learning rate extensions (e.g., ADAM, Adadelta, RMSprop) were introduced to limit
this effect.

• It is still under intense debate as to what kind of local minima these methods converge to, but
many times they converge to “bad” local minima leading to overfitting and a high error rate [2].
For this reason, many hot fixes such as dropout, weight decay, and a dynamic learning rate
have been introduced. The challenge is that these are not necessarily guaranteed to solve
these limitations, and lead to many extra hyperparameters that require additional tuning,
implying an additional heavy calculation burden.

• Using mini-batches of data allows for a more efficient numerical calculation because the
matrix-matrix multiplication algorithm can be leveraged in both CPU and GPU
implementations [3]. However, utilizing larger mini-batches can slow down the convergence
since the effects of different data points can cancel one another while averaging over the
gradients. Therefore, a tradeoff between minibatch size and convergence rate must be found.

[1] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural
Networks. IEEE Press, 2001
[2] H. Li. Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets, NIPS'18:
Proceedings of the 32nd International Conference on Neural Information Processing Systems, December 6391–6401,
2018
[3] G. Hinton, N Srivastava, K. Swersky, Neural networks for machine learning lecture 6a overview of mini-batch
gradient descent, 2012

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

1

4

The memcomputing approach aims towards a more global and parallelized optimization
algorithm. Each datapoint contributes towards the network update concurrently and in parallel
with the others, resulting in faster and more robust learning.

The memcomputing routine is an alternative to gradient descent-based methods. It is not based
on minimizing the loss function of the network by means of updates of the learning parameters
in the direction forecasted by the gradient (or by any variant), but rather it associates a
dynamical system to the DNN whose evolution naturally converges to equilibria that map zeros
of the loss function.

The associated dynamical system is designed to have properties that guarantee convergence
and speed, such us being point dissipative and having hyperbolic equilibria [4]. The dynamical
system is designed starting from the concept of self-organizing gates [4-5] that are a possible
realization of memcomputing machines [6-7] representing a completely new computing
architecture that can be simulated on virtually any CPU or GPU, and ultimately integrated on an
integrated circuit of its own. A self-organizing gate for the DNN is designed to embed the
evaluation of the neural network along an element of the dataset. The gate is designed to have
an equilibrium point that is a mapping of the zero of loss function related to the element.
Therefore, given a dataset input for the DNN, the dynamical system is defined by the network of
self-organizing logic gates, one for each element of the dataset, sharing a terminal for each
trainable parameter.

This approach allows for the trainable parameters of the network to be optimized together in a
truly parallelized fashion, allowing for the training of deeper networks without the need of most
hot fixes used for DNN training.

For a detailed look at the implementation of the memcomputing approach, see Appendix I.

[4] F. L. Traversa, M. Di Ventra, Polynomial-time solution of prime factorization and NP-complete problems with
digital memcomputing machines, Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 023107, 2017
[5] F. L. Traversa, M. Di Ventra, Memcomputing integer linear programming, arXiv:1808.09999, 2018
[6] F. L. Traversa, M. Di Ventra, Universal memcomputing machines, IEEE trans. on neural networks and learning
systems, 26, 2702, 2015
[7] M. Di Ventra, F. L. Traversa, Perspective: Memcomputing: Leveraging memory and physics to compute efficiently,
Journal of Applied Physics, 123, 180901, 2018

The Memcomputing Innovative Training Approach2

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

5

Collisions in high-energy particle colliders represent a crucial source of exotic particle
discoveries. Nevertheless, a vast majority of particle collisions do not produce any exotic
particles. For instance, the Large Hadron Collider (LHC) at CERN produces approximately 600
million collisions per second, but roughly 300 of these collisions result in a Higgs boson. For this
very reason, a significant challenge in finding exotic particles lies in the capability to solve
difficult signal-versus-background classification problems. Machine-learning approaches
represent a useful tool to support this differentiation.

‘Shallow’ machine learning models represent the foundation of standard approaches used to
support such discoveries. However, the Shallow machine learning models encompass 2 main
limitations:
1) A limited capacity to learn complex nonlinear functions of the inputs
2) A reliance on a meticulous search through manually constructed nonlinear features

Recent advances in the field of deep learning make it possible to learn more complex functions
and better discriminate between signal and background classes [8-9].

The memcomputing technology approach allows for particularly promising advances in this
field, as shown by this recent project.

In this case study, we compare the most popular deep learning methods against a memcomputing
technology approach.

[8] P. Baldi, P. Sadowski, D. Whiteson, Searching for Exotic Particles in High-Energy Physics with Deep Learning,
Nature Communications, 5, Article number: 4308 (2014)
[9]Higgs Dataset used for the comparative testing: https://archive.ics.uci.edu/ml/datasets/HIGGS

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

The CERN Large Hadron Collider

Case Study: The challenges in the detection of Exotic High
Energy Particles

3

https://archive.ics.uci.edu/ml/datasets/HIGGS

6

Comparative Tests: Set up and Methods
DATA SELECTION

• 11,000,000 labeled input vectors of length 28
• 80% forming the training set,
• 20% was set aside for testing.

• The selection was picked at random.

NEURAL NETWORK (NN)

• A fully connected feedforward network
• Composed of 5 layers of weights;

• 1 input layer of 28 nodes,
• 4 hidden layers of 300 nodes each
• A single node output layer.

• Activation function for hidden nodes: tanh
• Output node utilization of a sigmoid

function to bound the output between [0,1].
• Use of Binary Cross Entropy loss (BCE)

function, predominantly used for binary
classification tasks.

3 TRAINING METHODOLOGIES

• ADAM optimization algorithm implemented within
PyTorch.

• Stochastic Gradient Descent (SGD) optimization
algorithm implemented within PyTorch.

• Custom algorithm based upon a memcomputing
architecture.

4

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

AUC-ROC: DEFINITION AND IMPORTANCE

For classification problems, performance measurement is based on the AUC - ROC Curve analysis.
AUC - ROC curve represents a performance measurement for classification problem at various threshold
settings. This curve indicates how accurate a model is to distinguish between classes.
• ROC Curve = Receiver Operating Characteristics curve = It is a probability curve. It is a plot of the false

positive rate (x-axis) versus the true positive rate (y-axis) for a number of different candidate threshold
values between 0.0 and 1.0. In other words, it plots the false alarm rate versus the hit rate.

• AUC – Area Under the Curve. It represents a very good measure of separability.

 The ROC curve is useful for classification performance assessment for 2 main reasons:
• ROC curves of different models can be easily compared for different thresholds.
• The area under the curve (AUC) can be used as a visual summary of the model skill.

 The higher the AUC, the better the model is at predicting the categories
• AUC = 0.7: 70% chance that the model distinguishes between two different classes
• AUC = 0.5: the model has no discrimination capacity between two different classes
• AUC = nearly 0 : the model is actually reciprocating the classes
• In our case study, the higher the AUC, the better the model is at distinguishing between signal and

background classification problems for the detection of exotic particles.

Source - Medium. (2020). Understanding AUC - ROC Curve. [online]
Available at: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5 [Accessed 2 Feb. 2020].

GLOSSARY
• AUC = Area under the ROC curve
• BCE = Binary Cross Entropy
• CPUs = Central Processing Units
• DMMs = Digital Memcomputing Machines

• DNNs = Deep Neural Networks
• NCNZF = non-convex nonlinear zero finding
• ROC = Receiver Operating Characteristic curve
• SGD = Stochastic Gradient Descent
• SOLGs = Self-Organizing Logic Gates

HYPER-PARAMETER CONFIGURATIONS FOR MemCPU

• Set of hyperparameters for the Memcomputing engine 𝑡𝑡h, 𝑟𝑟 ̅, 𝑛𝑛
• Defaults values were set as 𝑡𝑡h = 0.035, 𝑟𝑟̅ = 14, 𝑛𝑛 = 8 as per a past project
• These parameters are independent on the DNN type and dataset, they are related to the efficiency of the

Memcomputing part of the algorithm therefore we can use the same values from past unrelated projects.

• Best batch size selection using a modified bisection method.
• For the first epoch, a batch size is 350 was selected,
• For the second epoch, a batch size of 700 was selected,
• For all the other epochs, a batch size of 1700 was selected,
• This batch size schedule led to the best convergence rates.
• Batch sizes allow for GPU acceleration: utilizing the GPU implementation of our code within MATLAB, we

found an 8X speed up with respect to the CPU. This can be substantially improved with a compiled
implementation in CUDA and C++, rather than in an interpreter like MATLAB.

• Other hyperparameters selection
• 𝑛𝑛 = 6 instead of 8 could save some running time and preserve the convergence trend.
• The 𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 parameter was evaluated by reintroducing lines 8, 9 and 10 of the algorithm, and an

optimal value around 𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 = 1.5 was found

HYPER-PARAMETER CONFIGURATIONS FOR ADAM & SGD
Test were performed in order to provide the best possible performance

• Batch Size: Batch sizes of 64, 100, 200, 500, 1000, 5000, 10000 were tested. The best trade-off between speed
of training and speed of convergence with a batch size of 1000. Below a batch size of 1000, no substantial
speedup in training convergence was noticed. Using a batch size lower than 200 prevented us from utilizing
GPUs for training, as anything less was faster using the CPU.

• Loss Function: Both MSE (Mean Squared Error) and BCE (Binary Cross Entropy) loss were tested and the BCE
loss leads to faster convergence than MSE loss.

• Weight initialization: Both the uniform distribution initialization standard within the PyTorch Framework, as well
as the Normal Distribution initialization were tested with no significant difference in their initialization scheme. The
normal distribution was selected to remain consistent with previous publications on Memcomputing.

• Dropout: Values of 0.05, 0.1, 0.5 were tested. The convergence is slower using a dropout, without an appreciable
increase in the final achieved AUC and in some cases a lower final AUC our final tests were performed with no
dropout. This is most likely due to the already noisy and large sized dataset along with batch size. Dropout in this
case is less effective than it might be otherwise.

• Weight decay: Weight decay values of 1e-3, 1e-4, 1e-5, 1e-6 and 0 were tested. Weight decay improves the
accuracy of the runs and a value of 1e-5 for SGD and for ADAM was selected

• Learning Rate: Learning rates of lr=0.01, 0.005, 0.001, 0.0001, as well as variable learning rates were tested.
The static learning rates were unable to converge quickly, or at all. Learning rate schedulers were tested and
reduced the learning rate by a factor f when the testing loss had not decreased by some threshold within n
iterations. We tested f =0.999, 0.99, 0.9, 0.8, 0.5, 0.1, as well as n = 0, 1, 2, 3, 4, 5, 10. A reduction factor f =
0.999 with an epoch plateau of n = 1 represented the best balance between speed of convergence and final AUC.
If n is set too low, the lr drops too quickly, while if n is set too high, the natural noise of the loss function will
prevent the lr from ever decreasing within a reasonable number of epochs. We started with a lr=0.001 which was
gradually reduced throughout training.

• Optimizer: SGD as well as ADAM were tested and a slightly faster convergence using ADAM was observed for
the initial epoch. For larger number of epochs, SGD converges faster.

Method Set Up

White Paper
Training A Fully Connected Neural Network

7

© Copyright MemComputing, Inc. 2020

8

Performance Assessment
Memcomputing vs ADAM without Weight Decay

This first experiment shows a comparison between the ADAM method and the memcomputing
approach. We intentionally removed the weight decay to show how hotfixes (the weight decay in his
case) strongly affect the gradient-based training of the DNN. The Area Under the Curve (AUC in figure
1, see reference [8] for more details) is a quality measure for the training: the higher, the better. It
represents a measure of the accuracy of the DNN in classifying inputs. The goal is to obtain the
highest AUC in the shortest number of epochs. As you can see from figure 1, the memcomputing
approach clearly shows the highest AUC.

Note the different curves labeled training and test. Training represents the known dataset that
“teaches” the DNN. The test demonstrates how the DNN reacts to a random dataset that is not
included in the training. The test indicates how one should expect the DNN to behave in production.

5

figure 1: Area under the ROC Curve (AUC) vs. Epochs

Fly back

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

9

Another measure used to analyze the training of a DNN is the loss function (figure 2).
• A lower loss function does not necessarily indicate better training because it depends on the local

minima the training process approaches. There are cases (like in this work) where wider local
minima can be shallower and therefore lead to higher loss function even if the accuracy of the
training (defined here by the AUC) is better.

• Wider local minima imply a more robust model because slight variations in inputs remain within the
minima. This allows the network to be more easily extended to datasets not included in the training
set, for example, the testing set used in this work. If a training process approaches a very narrow
local minima instead, there can be strong overfitting (represented by the gap between test and
training AUC in figure 1) and in some cases the flyback effect, i.e., there is a critical value for the
epochs for which the test AUC starts to decrease, and the loss function starts to increase (see the
relationship between figure 1 and 2).

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

figure 1: Area under the ROC Curve (AUC)
vs. Epochs

figure 2: Loss vs. Epochs.

10

Performance Assessment
Including the Weight Decay

In this second experiment, we include weight decay for both ADAM and SGD and train the DNN
using ADAM, SGD, and memcomputing for a significantly larger number of epochs.
• Note specifically that the memcomputing approach does not require the addition of weight decay

when performing training. Specifically, the weight decay helps training for the gradient-based
approaches, limiting the overfitting and avoiding the flyback (see figure 3).

• However, including the weight decay has its drawbacks: it requires an extra hyperparameter to
tune and slows down the convergence of the training.

Nevertheless, even including weight decay with ADAM and SGD, the training for
memcomputing still shows superior performance (higher AUC in a shorter number of epochs) and
similar overfitting (figure 3). Moreover, the loss function for memcomputing is still higher (figure 4),
symptomatic of a different quality of training, and combined with higher AUC implies broader but
shallower minima. That is, memcomputing provides higher accuracy for the testing dataset.

6

figure 3: Area under the ROC Curve (AUC)
vs. Epochs

figure 4: Loss vs. Epochs.

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

figure 5
Acceleration of MemCPU vs Adam and

SGD for different AUC Thresholds

figure 6
Output distribution after 1,000 epochs

We report in figure 5 the acceleration provided by memcomputing compared against ADAM and
SGD including weight decay. The acceleration is defined as the ratio:

For a given accuracy defined by a threshold in the AUC reachable by the other methods,
memcomputing provides a speedup of up to 6X. However, once the AUC exceeds 0.886, the
gradient based methods break down, and therefore, the acceleration represented by memcomputing
is virtually infinite. That is, you could train the DNN using ADAM and SGD forever, and it would never
get beyond 88.6% accuracy.

Figure 6 reports the output distribution of the test set for the three methods.
• It is evident how both SGD and ADAM approach qualitatively similar distributions associated with

similar minima for the DNN. The SGD and ADAM distributions are primarily on the boundaries,
meaning that the network has learned to be extremely confident (overfit) for specific data-points,
but fails to generalize to all data. This narrow minima fails to provide useful information from data
that does not cleanly fall into the learned classifications, apparent from the steep fall-off from
either end, as a small variation to the input can push the network out of the minima.

• On the other hand, the memcomputing distribution is disbursed close to the center,
showing that it tries to leverage as much information across the entire dataset. This
distribution allows for higher generalization outside of the original dataset. The shallower and
wider minima allow a more significant variation in inputs while remaining within the minima to
provide quality classification.

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

Performance Assessment - A Deeper Analysis7

11

12

In figure 7, we report the Receiver Operating
Characteristic (ROC) curve defined as the True
Positive Rate (TPR) versus the False Positive
Rate (FPR), i.e., the rate of correctly recognized
exotic particles (TPR) versus the false
positives. The AUC in the previous figures
represents the area under the ROC curve. It is
worth noticing that the ROC curves for the
representative gradient descent method
(SGD) and memcomputing are qualitatively
similar despite the different output
distribution reported in figure 6.

However, a closer look at the FPR and the TPR
versus the threshold to declare an output “yes”
or “no” (figure 8) clearly shows different shapes
for the curves, a consequence of the different
output distributions.

figure 7
ROC Curve

figure 8
True Positive and False positives rates

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

13
THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

4653 Carmel Mountain
RdSte 308 Mail Stop:
#AA150
San Diego, CA
92130-6650

http://www.memcpu.com
info@memcomputing.com

MemComputing, Inc.’s disruptive coprocessor technology is accelerating the time to find
feasible solutions to the most challenging operations research problems in all industries.
Using physics principles, this novel software architecture is based on the logic and
reasoning functions of the human brain.

MemComputing enables companies to analyze huge amounts of data and make informed
decisions quickly, bringing efficiencies to areas of operations research such as Big Data
analytics, scheduling of resources, routing of vehicles, network and cellular traffic, genetic
assembly and sequencing, portfolio optimization, drug discovery and oil and gas
exploration.

The company was formed by the inventors of MemComputing, PhD Physicists Fabio
Traversa & Massimiliano Di Ventra and successful serial entrepreneur, John A. Beane.

Please check our other White Papers and Case Studies!

Memcomputing provides a novel and superior method for training neural
networks. Our algorithm provides key improvements over the current industry
standard of backpropagation. As a case study we reported performance on the
detection of High-Energy Exotic particles problem.

✅ Faster convergence
✅ Higher accuracy
✅ More robust learning
✅ Fewer hyperparameters to tune
✅ Intrinsic lower overfitting
✅ Natural convergence to wider minima
✅ Stronger predictive and generalizable models

CONCLUSIONS8

Memcomputing benefits go far beyond improved neural network training. It
represents a paradigm shift in the way complex mathematical problems are
solved!

✅ Cheaper, simpler, earlier than quantum computers
✅ Ultra-fast solutions, particularly for previously unsolved problems
✅ Emulated in software, runs on classical architecture
✅ A brand new/patented computer architecture
✅ Computation & memory combined in the same circuit
✅ Uses classical low power, low heat transistor technology

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

http://www.memcpu.com/
mailto:info@memcomputing.com
https://www.memcpu.com/white-papers/
https://www.memcpu.com/case-studies_/

14

APPENDIX I
Implementation of the memcomputing approach

The Memcomputing routine output 𝑀𝑀(𝜃𝜃,𝐵𝐵𝑖𝑖,𝑛𝑛) is an approximation of the solution of the linear problem 𝐺𝐺𝛥𝛥𝜃𝜃 =
𝑙𝑙 − 𝐿𝐿(𝜃𝜃, 𝐵𝐵𝑖𝑖) where 𝐺𝐺 is the gradient of the function 𝐿𝐿(𝜃𝜃, 𝐵𝐵𝑖𝑖) with respect to 𝜃𝜃. 𝐿𝐿(𝜃𝜃,𝐵𝐵𝑖𝑖) represents the evaluation of
the neural network for the batch 𝐵𝐵𝑖𝑖 and the network parameters 𝜃𝜃 and 𝑙𝑙 is the vector of labels associated to the
batch 𝐵𝐵𝑖𝑖.

The Memcomputing approach builds a self-organizing circuit on the fly, designed to have an equilibrium
point for 𝜃𝜃 that is a mapping of the solution of the linear system 𝐺𝐺𝜃𝜃 = 𝑙𝑙.

• The actual algorithm simulates the self-organizing circuit for just few time steps defined by 𝑛𝑛.
• The final configuration of the parameter increments 𝛥𝛥𝜃𝜃 is the output of the routine 𝑀𝑀(𝜃𝜃, 𝐵𝐵𝑖𝑖, 𝑛𝑛) used to

update the learning parameters 𝜃𝜃.

IMPLEMENTATION OF THE METHOD

White Paper
Training A Fully Connected Neural Network

© Copyright MemComputing, Inc. 2020

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

